11,385 research outputs found

    Entanglement, BEC, and superfluid-like behavior of two-mode photon systems

    Full text link
    A system of two interacting photon modes, without constraints on the photon number, in the presence of a Kerr nonlinearity, exhibits BEC if the transfer amplitude is greater than the mode frequency. A symmetry-breaking field (SBF) can be introduced by taking into account a classical electron current. The ground state, in the limit of small nonlinearity, becomes a squeezed state, and thus the modes become entangled. The smaller is the SBF, the greater is entanglement. Superfluid-like behavior is observed in the study of entanglement growth from an initial coherent state, since in the short-time range the growth does not depend on the SBF amplitude, and on the initial state amplitude. On the other hand, the latter is the only parameter which determines entanglement in the absence of the SBF

    Teleportation on a quantum dot array

    Full text link
    We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, coupled by tunneling, with one excess electron. It is shown how to create maximally entangled states with this kind of qubits using an adiabatically increasing Coulomb repulsion between different pairs. This entangled states are exploited to perform teleportation again using an adiabatic coupling between them and the incoming unknown state. Finally, a sudden separation of Bob's qubit enables a time evolution of Alice's state providing a modified version of standard Bell measurement. Substituting the four quantum dots entangled state with a chain of coupled DQD's, a quantum channel with high fidelity arises from this scheme allowing the transmission over long distances.Comment: 4 pages, 2 figure

    The response of precipitation characteristics to global warming from climate projections

    Get PDF
    Abstract. We revisit the issue of the response of precipitation characteristics to global warming based on analyses of global and regional climate model projections for the 21st century. The prevailing response we identify can be summarized as follows: increase in the intensity of precipitation events and extremes, with the occurrence of events of "unprecedented" magnitude, i.e., a magnitude not found in the present-day climate; decrease in the number of light precipitation events and in wet spell lengths; and increase in the number of dry days and dry spell lengths. This response, which is mostly consistent across the models we analyzed, is tied to the difference between precipitation intensity responding to increases in local humidity conditions and circulations, especially for heavy and extreme events, and mean precipitation responding to slower increases in global evaporation. These changes in hydroclimatic characteristics have multiple and important impacts on the Earth's hydrologic cycle and on a variety of sectors. As examples we investigate effects on potential stress due to increases in dry and wet extremes, changes in precipitation interannual variability, and changes in the potential predictability of precipitation events. We also stress how the understanding of the hydroclimatic response to global warming can provide important insights into the fundamental behavior of precipitation processes, most noticeably tropical convection

    Density functional theory for strongly interacting electrons

    Get PDF
    We present an alternative to the Kohn-Sham formulation of density functional theory for the ground-state properties of strongly interacting electronic systems. The idea is to start from the limit of zero kinetic energy and systematically expand the universal energy functional of the density in powers of a "coupling constant" that controls the magnitude of the kinetic energy. The problem of minimizing the energy is reduced to the solution of a strictly correlated electron problem in the presence of an effective potential, which plays in our theory the same role that the Kohn-Sham potential plays in the traditional formulation. We discuss several schemes for approximating the energy functional, and report preliminary results for low-density quantum dots.Comment: Revised version, to appear in Phys. Rev. Let

    The interaction-strength interpolation method for main-group chemistry: benchmarking, limitations, and perspectives

    Full text link
    We have tested the original interaction-strength-interpolation (ISI) exchange-correlation functional for main group chemistry. The ISI functional is based on an interpolation between the weak and strong coupling limits and includes exact-exchange as well as the G\"orling-Levy second-order energy. We have analyzed in detail the basis-set dependence of the ISI functional, its dependence on the ground-state orbitals, and the influence of the size-consistency problem. We show and explain some of the expected limitations of the ISI functional (i.e. for atomization energies), but also unexpected results, such as the good performance for the interaction energy of dispersion-bonded complexes when the ISI correlation is used as a correction to Hartree-Fock.Comment: 20 pages, 20 figure

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    Plasma flows and magnetic field interplay during the formation of a pore

    Get PDF
    We studied the formation of a pore in AR NOAA 11462. We analysed data obtained with the IBIS at the DST on April 17, 2012, consisting of full Stokes measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI observations in the continuum and vector magnetograms derived from the Fe I 617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic field strength and vector components and the LOS and horizontal motions in the photospheric region hosting the pore formation. We discuss our results in light of other observational studies and recent advances of numerical simulations. The pore formation occurs in less than 1 hour in the leading region of the AR. The evolution of the flux patch in the leading part of the AR is faster (< 12 hour) than the evolution (20-30 hour) of the more diffuse and smaller scale flux patches in the trailing region. During the pore formation, the ratio between magnetic and dark area decreases from 5 to 2. We observe strong downflows at the forming pore boundary and diverging proper motions of plasma in the vicinity of the evolving feature that are directed towards the forming pore. The average values and trends of the various quantities estimated in the AR are in agreement with results of former observational studies of steady pores and with their modelled counterparts, as seen in recent numerical simulations of a rising-tube process. The agreement with the outcomes of the numerical studies holds for both the signatures of the flux emergence process (e.g. appearance of small-scale mixed polarity patterns and elongated granules) and the evolution of the region. The processes driving the formation of the pore are identified with the emergence of a magnetic flux concentration and the subsequent reorganization of the emerged flux, by the combined effect of velocity and magnetic field, in and around the evolving structure.Comment: Accepted for publication in Astronomy and Astrophysic
    • …
    corecore